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It is discussed how a common space-time can be constructed from a proposed 
hidden U(2) world. Schrrdinger's idea to obtain discrete eigenvalues by solving 
the Maxwell equations for the field F on compact spaces without boundaries is 
modified by orthogonality and identification concepts for the potentials A. Using 
residue classes with respect to the metric (Clifford algebra), a common spinor 
space C 4= R |  and a common Minkowski tangent space R 4 are biljnearly 
constructed from tangent spaces of U(2) individuals [U(2) manifolds with 
orthogonal potentials]. The space constructed has the following properties. (1) 
There are algebraic elements for the identification of U(2) individuals from R 4 
as spinors ~0 and vectors A. (2) The transfer of the potentials from U(2) via C 4 
to R 4 is linear. (3) The hidden U(2) content of the left- and right-handed spaces 
(L, R) is quite different. The potentials on U(2) individuals are transformed 
into complex wave functions ~O on the spinor space and into 1-forms A on R 4 
that can be enlarged to gauge potentials. The construction is discussed from an 
old point of view of Einstein's, starting with the electric charge as the primary 
concept for quantum theory. The construction of the tangent space R 4 does not 
depend on a preceding introduction of any points (uncertainty). The identity 
problem of the interpretation of the quantum theory is discussed in some detail. 
It is indicated how the algebraic, partially ad hoc constructions can give a rigid 
frame for further analytical work. 

1. I N T R O D U C T I O N  

T h i s  p a p e r  is i n t e n d e d  to  b e  a f u r t h e r  s t e p  in  t h e  r e a l i z a t i o n  o f  a n  o l d  

i d e a  o f  E i n s t e i n ' s  (1909)  o f  s t a r t i n g  w i t h  t h e  e l ec t r i c  c h a r g e  as t h e  p r i m a r y  

c o n c e p t  f o r  q u a n t u m  t h e o r y .  

I n  p r e v i o u s  p a p e r s  ( D o n t h ,  1984, 1986;  D o n t h  a n d  L a n g e ,  1986)  a 

h i d d e n  n o n l o c a l  c h a r g e  m o d e l  w as  c o n s t r u c t e d  b y  u s i n g  t h e  p e r i o d i c  so lu -  

t i o n s  o f  t h e  f o l l o w i n g  c o n j u g a t e  t r a n s v e r s e  w a v e  e q u a t i o n s  fo r  p o t e n t i a l s  

Ai,  i -- 1, 2, o n  U ( 2 ) :  

02A1 1 02A1 1 0 ( c o t  --:-]0AI\ 

0T 2 cos  2 O3 0 ~  co t  O3 0 0 3 ,  O 3 0 ~ 3 /  
~ 0 (la) 

lTechnische Hochschule "Carl Schorlemmer" Leuna-Merseburg, Sektion Physik, Merseburg, 
DDR-4200, German Democratic Republic. 
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02A2 1 02A2 1 O { 00A2'~ 
tan = 0 ( lb)  

Or 2 sin 21~ 3 0@ 2 tan 1~ 3 003 ~ 3 003] 

The symbols will be explained in the next section. Thus, our approach starts 
with an idea of Schr6dinger's (1940) to obtain discrete eigenvalues by 
solving Maxwell 's equations for the Faraday field F on a compact  space 
without boundaries, e.g., on the Einstein cosmos [ -  U(2)]. Two modifying 
concepts are introduced and will be generally used. 

(A) The concept of  orthogonality (and related concepts such as trans- 
versality) are used, e.g., for " n a r r o w i n g ' t h e  Maxwell or harmonic equations 
for the 1-form A on U(2) to equations ( la) ,  ( lb)  (div e A = 0, gw12AiA2 = 0), 
and for the introduction of Clifford and spinor algebras. This seems to be 
quite natural because one cannot even write down a wave equation without 
using a metric, and because, for instance, a simple wave equation in three 
or more dimensions (e.g., the Kle in-Gordan  equation) has conformal sym- 
metry. 

(B) The relation between the hidden U(2) world and the common real 
space-time [~4 with tangential space R 4 is thought to be more complicated 
than a simple identification of tangent spaces. The construction should 
contain the possibility of  identification of indivisible (in Bohr's sense) U(2) 
objects as observable quanta from the common space-time. 

The aim of the paper  is, following these concepts, to present algebraic 
elements for a geometric ad hoc construction of a common tangent space 
N~ from tangent spaces of  our U(2) charge model. These elements should 
give a rigid frame for further differential geometric work and are used for 
discussions of several quantum concepts, especially the identity problem, 
and for some new speculations on what a charge is and what a mass is. 
This aim is also commented on at the end of the next section. 

2. I D E N T I F I C A T I O N  OF THE OBJECTS OF A 
HIDDEN U(2) WORLD 

This section is devoted to a sketch of a suggested hidden U(2) world 
and to a proposal  on how their objects can be identified with observable 
objects in our M4 world. 

The basic construction is a U(2) charge (Donth, 1984) that is thought 
to be of  "infinitely large" size. There are many of them, which are assumed 
to be "mutual ly interpenetrating," like the Coulomb fields of  different 
charges in real space. 

Three different realizations of  the basic U(2) construction can be 
discussed: leptonic spinors 0, exchange (or connection) vectors A, and 
vacuum elements ~b. 
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2 . 1 .  ~b I n d i v i d u a l s  

Basic elements of the construction are the so-called ~b individuals 

0: {U(2),gw, A~k}, i =  1 or 2 (2) 

They consist of the U(2) manifold [ U(2) = S 3 x S 1] with a pseudo-Rieman- 
nian bi-invariant (standard) metric, the so-called wave metric gw, 

gw: ds 2 = -(s in  203 dq~ + cos 2 03 dq~ 2 + dO~) + dr 2 (3) 

written in biharmonic coordinates on U(2), 

{~91, ~2, Dq3, "/'}, 0--< ~pl, ~p2, r < 27r, 0~  O3< 7r/2 (4) 

and electrodynamic potentials Ai, i = 1 or 2, in the direction of the S 3 
coordinates q~l or ~2, 

(m+)k:~ :=A'~k=exp(iwT--imq~2);mk(X)' x = c o s  1~ 3 (5a) 

( m - )  :=A '~k=exp( iwr - imq~ l ) f imk(~ ) '~=s inO3k+ (5b) 

The advantages of the coordinates (4) are discussed by Schr6dinger (1940). 
They correspond, in a way, to the Heegaard diagram of genus 1 for S 3 (two 
symmetric tori with souls 03 = 0 and 03 = Ir/2). The potentials (5a), (5b) 
are periodic solutions of equations (la), (lb). The coordinates 03 and r 
cannot carry transverse wave potentials: A 3 = 0 ,  A 4 = 0. The Y,,,k functions 
are harmonic orthogonal polynomials depending on the 03 coordinate 
of $3c  U(2) [cf. equation (11), below]. A i r  also applies for m = 0 ,  
i = 1  or2.  

The term "individual" for ~0(2), and A(9) below, was chosen in order 
to remind us of the indivisibility or wholeness of quantum phenomena. 

Interpreting the individuals as charges, then m is the eigenvalue of the 
charge, the index i = 1 or 2 distinguishes positive and negative charges, k 
is the lepton generation number, for instance 

electrons e,/.~, r , . . .  : (~-), ( s  ( •  7 +) ,  �9 �9 �9 (6a) 

( O ) ( 0 ) (  0 ) 
neutrinos re, v,, v , , . . .  : . . .  (6b) 

' :k-I- ' • 1 7 7  ' 

B: (o) seems to be a good candidate for the baryon charge, and the 
"connection" is given by 

to = 2k + m (7) 
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Exotics such as 

are also possible. 
The two tori of the Heegaard splitting are not connected by sealing 

their "boundaries,"  but there is some kind of junction by means of"over lap-  
ping" the two conjugate equations (la),  ( lb) or (5a), (5b). 

The topological aspects of the electrical charges are hidden in the two 
chained-up tori of the Heegaard splitting. 

2.2. A Individuals 

Consider a world consisting only of nonlocal U(2) objects such as (2). 
If one wishes to describe a configuration of or an interaction between them, 
one should have a connection between them. 

I suggest we construct a common space-time from elements stemming 
only from U(2) objects. Thus, we will not construct a space-time that would 
be independent from the U(2) individuals. That is, the borderline between 
form (space-time) and contents (physics) will be shifted a little in the 
direction of physics. 

The main idea is that the structure of the common physical space results 
from a U(2) construction based on an overlap of two conjugate solutions 
(5a), (5b). Then we would have the possibility to quantize the interaction 
carriers (A individuals) and to identify them as vector particles. [Taking 
only the ordinary tangent spaces of the U(2) manifolds would not give 
such simple possibilities.] 

The following construction principle is suggested. An A individual 
consists [in the sense of equations (5a), (5b)] of two conjugate U(2) objects 
like (2) with a junction * between them: 

A = ( m l v + ) * ( m ; - ) = ( A l t y p e ) * ( A 2 t y p e  ) (9) 

For instance, 

A=(Ov)*(-Ov), Z~ (+) * (7) 
(10) 

No comprehensive definition for the term junction has been found. But 
only a preliminary definition is needed for the purpose of the present paper 
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[see Remark 5.1 and equation (76) and Table I I I  below]. The generation 
number  k of  the 4J's is replaced by a vacuum susceptibility v in the A's, 
indicating the presumed importance of the vacuum for the construction of  
the "connection individuals" A from two parts. Using v instead of k also 
means the assumption that there is no generation problem with the A's. 

2.3. Vacuum Elements  4~ 

I refer to the general instability of  elementary particles increasing with 
their growing complexity. This is especially important in the case of  k --> o0, 
which is linked to the concepts of  vacuum and of the classical body in 
quantum experiments. We ask: What could be the decay products of  a ~b 
individual for k--> oo? Let us consider a simple example for the main idea. 

The Ymk polynomials (5a), (5b) can be written in the form 

Ymk(Z)=Zm/2 ~ ( - 1 ) ~ ( k ) ( k + m ~ l )  \ m +  (11) 

where z = x 2 and 1 - z = ~ = ~2 = 1 - x 2. Vacuum elements have been defined 
as A ~ functions with small k'  values (and, perhaps,  small m '  values instead 
of m ' = 0 ? )  being members of  a series expansion of the big A ~ k >  (>>) k'. 
In the special example of  series (11) we have the virtual neutrinos of  only 
one generation, 

tb: {Vz = exp(2i~')z, v~ = exp(2i~")~'} (12) 

for 

A1 . . . .  ~'~ + .  �9 �9 (13) 

with z =  r'.  They are called virtual because neither v~ nor v~ -~ nor their 
product is a "t rue"  individual in the sense of  equations (5a), (5b) for 
K, k - K  > 1. The instability is believed to be caused by the large vacuum 
degeneracy as expressed by large "statistical weights," represented by the 
binomials in equations (11) or (13). The virtual decays are believed to be 
the source of the stochastic elements in quantum theories. 

2.4. Renormal izat ion 

The main idea about renormalization in our frame is that the many 
vacuum elements must be taken into consideration for an experiment 
(Donth, 1986). Consider the example (13) again. An experiment M is 
assumed to be represented by a formula of  the structure 

M =  gKAKBk-~(Kk) 2 (14) 
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The binomial comes from equation (13) for large k; A and B are normaliz- 
ation constants linked with the vacuum elements (12); and g is a coupling 
constant translating the power of  vz, for instance, from the U(2) level into 
the M level. In the limit k ~ 0o for fixed 

y := lim(K/k) (15) 

0 < y < 1 (y ~ 1/2 means a break of vacuum symmetry), one obtains a fixed 
value of gM = gM(Y, A, B) for the actual g having the following property: 

M = 0 for g < gM 

M is not defined for g = g~  (16) 

M = ~ for g > g~  

Therefore, we obtain exactly one value of the coupling constant, g = g~,  
for a finite experimental value of M. 

The numerical value of M is not determined by equation (16). I f  we 
assume that the fields qJ and A in ~4  are also influenced by the pr imary 
potentials Ai of  the th's in the limit k ~  ~ ,  then they also become totally 
indefinite (which is a prerequisite for all renormalizations). Therefore for- 
mula (16) has the effect that the numerical values of  all physical variables 
have to be determined anew in the common space-time physics. 

Remark 2.1. (General  construction principle.) At first sight, only the 
~O individuals seem to be reasonable objects from equations ( la) ,  ( lb) .  The 
other constructions come from the following idea: Individuals with large 
eigenvalues k (or m) are not stable, but their decay products can be 
combined anew [A individuals, hadrorric individuals as combinations with 
the baryon charge (Donth,  1986) , . . . ,  experiments] and can form in total 
the vacuum with the nonindependent  vacuum elements. 

2.5. Comments  on the Aim of  the Paper 

The present paper  follows a general U(2) program (Donth, 1986; Donth 
and Lange, 1986) to prove the physical significance of  our charge model. 

It is not my only objective to recover the well-known spinors anew, 
but I will also check whether the hidden U(2) structures are consistent with 
the classical constructions of  Dirac and van der Waerden (see, for instance, 
Dirac, 1958; van der Waerden, 1974) or of  Brauer and Weyl (1935), or, in 
a sense, of  Penrose (1968). 

The general question of how to derive the structure of  the natural 
space-time from certain physical conditions is not so new. Only some 
concepts are mentioned: Weyl's ingenious argument for the Pythagorean 
metric (Weyl, 1923), the Huygens principle (Courant, 1962), and 
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von Weizs~icker's and Bopp's ur-spinors (von Weizs/icker, 1986). The variant 
pursued here has new aspects, since it starts from electrical charges as the 
primary concept and uses an explicit model for a hidden U(2) world as 
being the presumed reality behind quantum theory. 

3.  MATHEMATICAL SYMBOLS 

The following symbols will be used according to the notions of van 
der Waerden (1967, 1971, 1974) and Dubrovin et al. (1986). 

Quaternion units: {1, 1,j, k}. 
Imaginary unit: i, i = l when related to the quaternion units. 
Quaternion coordinates: {a, b, c, d}, that is, 

q=a+bl+cj+dk, q~H 
R 4 coordinates: x k = {t, x, y, z}, c = 1. 
su(2) algebra: {s 1, s 2, s 3} = {s x, s y, sZ}. 
u(2) algebra: 

u(2) = {il, s 1, s 2, s 3} = io -k 

_ { ( ~  0 ) , ( 0  ~ ) , ( _ ~  ; ) , ( ~  O ) }  (17) 

Quaternion units in C 2 -  H: 

with a correspondence between the last three matrices of equations (17) 
and (18) that interchanges the order, 

(x, y, z) -- (k,L l) (19) 

Then we have 

( a+bi c+ 
H~q=x+y j=  -c+di  a -h i  

1 2 ( 2 0 )  
u=x=a+bi ,  u=y=c+di  

for the C 2 vectors x and y (not to be confused with the R~ coordinates). 
Pauli matrices (including the unit matrix): 

_~ 
Van der Waerden matrix: 

x 
E ~kXk (22) 

\c2~. c22./ \ x+iy  - z + t /  =-s 
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SL(2, C) on C2: 

g(SL(2, C))=( a fl), a 6 - y ~ = l  (23) 
Y 

The basis (18) of the spinor space C 2 is distinct from the u(2) algebra 
(17) in the first matrix, and this difference relates to the decompactification 
of the u(2) "overlap" by C ~. For the time being one cannot see how u(2) 
can come into operation. A clue is given by the van der Waerden matrix 
(22) with a Hermitian basis ~r k= - iu(2) ,  which is complementary to u(2) 
in the sense that the sum of u(2) and iu(2) constitutes the eight units for 
all complex 2 x 2 matrices when one considers linear combinations with 
only real (geometric) coefficients. 

Remark 3.1. (Orthogonality and linearity.) Orthogonality is an impor- 
tant concept for the construction of spinor representations. We have to 
show how the orthogonality g~a2A1A2 = 0 of our harmonic potentials on 
U(2) is transferred to orthogonal (conformal) constructions for ~4. The 
potential 1-forms should be linearly transferred from U(2) to R 4, otherwise 
we have no chance of obtaining the superposition principle of quantum 
theory. No powers of A 2 o r  A 4 are allowed here, which seem to be unavoi- 
dable in usual tensor constructions without orthogonality. 

4. VECTOR SPACE 9Y~ [TANGENT SPACE AT U(2)] 

Consider the tangent space at the manifold U(2). This is a four- 
dimensional vector space ~)32. The vectors therein are denoted by u' and 
their units by u'i, 

! f ~ :  {u~, u2, u3, u~} 

u '=  Y~ ul/3~ = u~/3~ + u~/3~+ uk/~ + u]/3~ (24) 

The unit components will directly be linked with the orthogonal biharmonic 
coordinates (4) on U(2), {q~l, q~2, 03, ~'}, 

! 

u l ~ O / a q ~ l ,  u2' ~ a/a~,2, u3' - a/a '03,  u ' . ,~a/a . r  (25) 

No serious problems can arise from the coordinate system singularity at 
1~q3 ~ 0,  3"/'/2, if the renormalization is connected with an average angle of 
Ok # 0, ~-/2 (y ~ sin 2 Ok). 

The wave metric (3) in U(2) corresponds to a bilinear form Q of the 
coordinates fl'i on ~r~, 

Q ~ gw (26a) 
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which is assumed to be orthonormal 

Q(u) = Q(/3~, 131,/3~,/3~) =Y q~/312 (26b) 

Q and gw have the same signature 

( - -  - + )  (27) 

that is, we have chosen the unit form 

qa = q2 = q3 --'-= -1 ,  q4 = +1 (28) 

There is no loss of generality with the orthonormalization equations (26b) 
and (28) because the renormalization property (16) allows such a separation 
between space and field. The construction of ~ does not directly refer to 
the U(2) topology of the manifold; it could also be the tangent space of 
another four-dimensional manifold. 

5. CLIFFORD ALGEBRA ~ WITH RESPECT TO Q OF $ff/ 

Usually, tensor constructions are used for higher spaces, for example 
spin-tensors, in order to obtain vectors from spinors. Component  products 
are also used in the representation theories. But it is our ultimate aim to 
construct a connection in the common space that is mediated by the A 
individuals (9) with a definite geometry. Considering an algebra geometri- 
cally as a local representation of a nontrivial geometry such as S 3, then the 
higher space should be able to contain such an algebraic structure, which 
at least makes it possible to construct s a c  U(2). First a Clifford algebra G 
over ~ will be chosen because it is constructed by the form Q retaining 
an essential element of our U(2) individuals, namely the metric (orthogonal- 
ity concept). 

Assuming it is possible to find elements ui with the properties (a)  any 
ui linearly depends on ul [equation (25), same index] and (/3) they can 
linearly depend on the desired map from U(2) to the common space, then 
the 16 units of ~ are 

1 

Ul~ U2~ /'/3, I'14 

ulu2,  u2u3, u3ul ,  u4ul ,  u4u2, u4u3 (29) 

UlU2U3,  U2U3U4 ~ U3U4Ul ~ U4Ul ~/2 

/'/5 ' ~  Ul U21"/3 U4 

with the following relations between the generating elements: 

U i U  i = qi, uiuj + ujui = 0 (i  < j )  (30) 
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In the invariant language, the space constructed is a residue class 
construction with respect to the metrics. More precisely: Let ~ be the tensor 
ring and ~ the two-sided ideal which is generated by 

uu-Q(u) (31) 

Then ~ is the ring of residue classes Z / ~ .  Roughly speaking, all the metric 
constructions which are equivalent with respect to equation (31) are con- 
sidered as one element of  the algebra units. 

Example 5.1. The following statement (van der Waerden, 1971, 1967; 
Dubrovin et al., 1986) shows explicitly the possibility of bilinear geometric 
constructions from ~. The second Clifford algebra ~+ of the ternary quad- 
ratic form 

Q(f l , ,  fl'2, fl'3) = q,fl,2 + ,2 ,2 ' q2~2 q- q3~3 (32) 

is the algebra of general quaternions. The space of Hamiltonian quaternions 
H is obtained by ql = q2 = q3 = - 1 .  The relation to S 3 is mediated by the 
quaternion norm qt~ = 1, q-1  = ~, q ~ H1, 

~-~1 = $3 (33) 

See also Example 7.1 below. 

Remark  5.1. [Identity (i).] In order to define the identity problem of 
the interpretation of the quantum mechanical formalism (see, e.g., Cramer, 
1986), we must ask ourselves: What is the wave function 0, and, more 
specifically, what is its components? How can one link OR, qJL; ~0, ~0c; 0, 
~b*; 0t, ~0~; . . . ,  with the particles? 

Let us recall once more that it is our aim to include the general 
construction principle (9) for A individuals into the construction of the 
common space. But then We must be able to represent single individuals in 
it, too ! 

Considering first the A-based construction principle, we can link the 
following picture (two-u construction) with the generating equation (30). 
One u comes from the Al- type part, and the other u comes from the conjugate 
A2-type part o f  equation (9). This construction can be interpreted as one 
realization of the junction concept of this equation. We can relate the most 
nonspecific character of  the residue class construction for the common 
space to the great number of vacuum elements needed for the susceptibility 
v. This means that the bare units ui do not contain information from single 
individuals. 

Consider now single qJ (or A) individuals in this space. Their potentials 
(A1 ,  A2) are orthogonal with respect to the general metric (3). Denoting 
the (map of  renormalized) individual potentials in the higher spaces by fli, 
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then it follows from the orthogonality that all the/3-coordinates for the 16 
units (29) of the higher space are, at most, linear in/3. That means that the 
individuals are linearly expressed by coordinates (/3) in the higher space. 
More details on this point (spinor construction) are presented in Remark 7.1. 

It should again be stressed that, from the very beginning, the bilinear 
elements (30) are common to both generating parts of equation (9). Because 
of the high symmetry of equations (30), too, there is no sense in asking 
whether a (or which) ui in equation (30) is linked with a given ~p individual. 
This means that the ~b individual living in constructions with units from 
equation (30) must principally be able to go into either of the two "u  rooms 
of our new house" that originally correspond to the two conjugate parts of 
the construction (9). All details of the U(2) individuals, i.e., the behavior 
of the Ai (q~l, ~2, O3, ~') functions, except for the common metric (orthogon- 
ality), are extinguished by the residue class construction (21). 

Our two-u construction is, as follows from the further development of 
these ideas (see especially Remark 7.1), the reason for the well-known facts 
t h a t  If/R and OL are not different particles but only components of one 
massive particle, that a common field must be used for electrons tb and 
positrons ~Pc in the Dirac four-spinor, and so on. The full identity of  the 
individual particles is therefore not given a priori by the ~/, field only, but 
must be determined by the mass and charge construction, which is as yet 
unknown. This point will be discussed further in Remark 11.5 and in 
Section 13. 

6. SECOND CLIFFORD ALGEBRA ~i+ OF ~i 

The selection ~+ c ~ is motivated by the two-u construction of Remark 
5.1 that distinguishes even combinations of u. Further, Example 5.1 also 
calls for a second Clifford algebra, since S 3 elements are needed in our 
construction [ U(2) = S 3 )< $ 1 ] .  

The eight unit components of ~+ are denoted by 

{1, I, j, k, E, L, J, K } (34) 

~+ = 1, / /1 /22 ,  U2U3,  / /3/ , /1,  U 5 ~ g14/,/3 , /,/4/,/1 , U4U 2 

Now the definition of the u's [ (a)  and (/3) of Section 5] can be limited to 
even-u combinations. For instance, one can relate the generating relations 
(30) to derivations of corresponding scalar products, permitting the applica- 
tion of fine geometric methods of the orthogonality concept. 

The multiplication table of  ~+ (column times row) is obtained from 
equation (30) and is given in Table I. 

The following abbreviations will be used. An element of 

@+ : {H, H} (35) 
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Table I 

1 1 j k E L J K 

1 1 1 j k E L J K 
1 1 - 1  + k  - j  L - E  + K  - J  
j j -k -1 +1 J -K -E +L 
k k +j -1 -1 K +J -L -E  

E E L J K -1 - I  - j  -k  
L L -E +K - J  - I  +1 -k +j 
J J -K -E  +L - j  +k +1 - l  
K K +J -L -E  -k - j  +l +1 

is called a biquaternion, where 

H = {1, l,j, k} (36a) 

is the quaternion field, and where 

H = - H i = - i H = { E , L , J , K }  ( i = / )  

= usH = Hus, u5 = E, E 2= -1  
(36b) 

From Table I one obtains 

H.  H = - H .  H =H (37) 

~ .  H = H .  H = H  (38) 

In particular, notice that there is no one-to-one correspondence either 
between H and the Al-type or between H and the A2-type parts of an A 
individual. According to Remark 5.1, both parts are well mixed inside both 
H and H. 

Remark 6.1. Biquaternions are associative and therefore distinct from 
octonions. The Frobenius-Pontryagin theorem would make it difficult to 
obtain locally compact and connected fields when we go too far beyond 
quaternions. The "no go" of a linkage between "internal" and "external" 
symmetries is avoided by algebraic structures built into the latter spaces 
from the very beginning. {H, H} is isomorphic to the general matrix algebra 
M(2, C), to Imaeda's (1976) biquaternions Z, and to the Clifford algebra 

of ~3 with the signature ( + + + ) ,  but is not isomorphic to Clifford's 
biquaternions HOH,  being ~ of ~3 with ( - - - ) ;  cf. also the classification 
by Salingaros (1981). 
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7. S P I N O R  S P A C E S .  C O N S T R U C T I O N  O F  T W O  
C O M P L E X  S P A C E S  C 2 A N D  I~ 2 

As is well known,  H - C  2. There  are two C 2 spaces in the van  der 
Waerden  const ruct ion of  sp inor  spaces,  C 2 and (~2, where (;2 is defined as 
a space that  is t r ans formed ,  under  a given SL(2, C) group  on C 2, by complex  
conjugate  elements.  We ask whether  one can construct  a (22 space f rom 
with the p roper ty  ~]2= ~2. 

The const ruct ion of  C 2 f rom H is well known:  

q = a + b l + c j + d k ~ H  

= x + y j  = x + j y  (39) 

C2= {x, y}, x = a + b i ,  y = c + d i  
(40) 

f = e - d i  ( i = / )  

The mul t ip l ica t ion  of  two quaternions  remains  on C 2 with the componen t s  
(x' ,  y ' )  

(x + yj)( u + vj) = (x + yj)( u + jO) 

= (,~._.-.y~) + (xv+ y~)j  
(41) 

x '  y '  

The  const ruct ion of  (22 f rom H is analogous ,  

4= dE + bL + ~J + ~lK ~H (42) 

~ = s - 37j, ~c = f) - gti, 37 = d - ~i (43) 

(22 := {if, 37 } is also a C 2 space with a stable mul t ip l ica t ion with a similar  
c o m p o n e n t  structure as before,  and 

()~ - 37j) ( a  - ~j) = ( ~  - 373) - (3~ - 37~)j (44) 

Thus,  

H : (  a+b i  c+d i ]  ~ : ( ~ - d i  ~ - ~ i ~  (45a) 
- c + d i  a - b i ] '  \ d + ~ i  - b - d i ]  

From these formulas  one can see that  (22 is conjugate  to C 2 with respect  to 

j-->-j, i ->-i ,  "a<->b, c o d "  (45b) 

Remark 7.1. (Transformat ions  in C 2 and  ~;a.) Two quest ions will be 
discussed in this quite lengthy remark.  (1) Does  (22 = ~;2? (2) What  kind of  
t r ans fo rmat ion  occurs?  
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Generally speaking, we suggested that the coordinates (/3) of the 
physical vectors on ~+ are related to the potential 1-forms (5a), (5b), A1 
and A2, on the individuals. In our nonlocal interpretation of the component 
solutions (Sa), (Sb) as electrical charges, "one"  U(2) bearing both A1 and 
A 2 would correspond to the case of two ~ individuals with different charge 
signs. Moreover, two individuals of + charge and one individual of  (+ +) 
charge are also different things [because all Ymk functions are different from 
one another for different (m, k)]. According to equation (3), only the 
potentials (5) carry the information (i, m, k ) - -our  knowledge--about  the 
kind of 0 individuals. Two conclusions can be drawn from these statements. 

Concerning question (1). The relation between the U(2) level and the 
~+ level will be denoted by ~.  According to Remark 5.1, the coordinates 
/3i, which are linked to the corresponding ui (same index i), can only be 
related to the corresponding U(2) potentials Ai (same index i). This implies 
that there are no variable/3's when there are no potentials in the correspond- 
ing directions. This is expressed by/33 - 1,/34 ~ 1. Since ~ and ~2 can carry 
potentials, variable/3's are possible in these directions, fll ~ A~, /32-A2. 
The term "variable" means that, although the/3 's  cannot yet ultimately be 
defined [because we do not have a complete definition of the u~uj combina- 
tions (30) and because they are uncertain in the sense of the experiment, 
equation (16)], they can be renormalized and they can be varied by transfor- 
mations. For the ~'s, either/31 is the variable (for 01, that is, a ~ individual 
bearing A1), or/32 is the variable (for the anti-individual ~b2). For the A's 
the orthogonality must be taken into consideration. This means /3~/32~ 1 
for the A's (no variable information for strong orthogonality). 

Summing up, we have 

/31 ~ A1, /32 ~ A2, /33 ~ 1, /34 ~ 1 

i1 for i~r 1 
/ 3 1 / 3 2  ~ 2 "  for 02 

for A 

(46) 

All the variable fl's are listed in Table II for the physical coordinates of 
the individuals. 

The transition from the formal (tensorial) attachment in the third 
column to the individual attachments for ~b and A is made using formulas 
(46). Table II shows that the U(2) to (H, H) potential transfer A i-~ [~i is 
linear in all nonformal cases. 

The "primary anisotropy" of the physical fl component distribution 
over H and H in Table II is not a serious problem. According to the 
next-to-last paragraph of  Remark 5.1, all directions are principally accessible 
and we can make a rotation of the frame in order to get other components 
in the H's. 
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Table II 

Physical 

Basis q or ~ Formal qq 4J2 A 

1=1 a 1 1 1 1 
I =  u lu  2 b fllfl2 fll  f12 1 

J= U2U3 ~ ~2~3 1 ~2 f12 
k = UsU 1 d f l l~3 fll 1 fll  

E = u 5 d fll~:fl3fl4 fll fiE 1 
L= U4U 3 b f13ffi4 1 1 1 
J = U4Ul c ~1~4 fll 1 fll 

K =  u4u 2 d f12ffi4 1 fie f12 

As in Table II ,  we will connect  the term "physica l"  with the/3 variables 
in the sense o f  equat ion (46). This term will also be applied to the corre- 
sponding  variables ~1, q~2- The other  variables, ~-and 03, will occasional ly 
be called "h idden , "  a l though a sharp separat ion is not possible, since all 
four  u 's  are well mixed in the two-u construction. 

Transformat ions  are only interesting for physical  variables. Let us take 
the b iquaternion coordinates  f rom Table II  that  are equivalent ( = )  in the 
"p r imary"  /3 pattern for ~0 and A as a whole. Then 

a ~/~, b ~ t~ (47) 

c = d, a = ~ (48) 

Compar ing  with the formulas  (45a), (45b) we see that (Y, 37) e ~2 is transfor-  
med by complex  conjugate parameters  o f  a (x, y)  ~ C 2 t ransformation,  which 
means i ~ - i, or 

~2 = C2 (49) 

Concern ing  question (2). We must  now ask: What  is a spinor  transfor-  
mat ion in the "pull  back"  to the u(2) level o f  the individuals? (Spinors are 
o f  course vectors in C 2 and C2.) 

Only  {u~, u;} = R 2 c  99~ will be considered,  because u3 and u4 do not  
carry information.  Since we do not  have any characteristic length in the 
U(2)  man i fo ld - - the re  is no finite U(2) or S 3 " radius ,"  and all the variables 
are ang les - -we  can image (cf. Section 2) that the u(2) 's  are "infinitely 
large," like the range o f  Cou lomb  fields, and that their "s ize" can be varied 
by scaling. The simplest t ransformat ion at the U(2) level is a scale com- 
parison of  the R2's for two individuals. Provided that the or thogonal  structure 
is conserved in the compar ison,  the t ransformat ion is conformal .  Therefore,  
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we shall consider the simple conformal transformations of R2---that is, 
Liouville's conformal group on R 2 (Weyl, 1923; Dubrovin et al., 1986, 
w167 15, 24). This group is isomorphous to SL(2, C) for the spinors, 

(50) 
/3* ~2 ,L(2 ,  C) : [ ( ; :  3*)  for 

a~ -/33/= 1 

Remark 7.2. [Identity (ii).] Now we can discuss the physical contents 
of the spinors. There is no spinor without a 0 individual. Regarding the 
information about the q, individuals--our knowledge of the leptons--we 
must consider the physical contents of the/3's.  According to equation (46) 
and Table II, the latter are linked with the electromagnetic potentials Ai 
on U(2), irrespective of renormalization. Generalizing slightly, we reach 
an interpretation resembling some early ideas of Schr6dinger and de Broglie: 

The wave function ~b is, considering its physical contents, the potential 
1-form (5a), (5b) of the U(2) individuals (2) realized on the spinor space. 

The /3's and therefore the wave functions carry all the information about 
the q, individuals: i = 1 or 2, m, and k. They are principally complex because 
the potentials (5a), (5b) have complex exponentials. The latter have U(1) 
topology and carry the integer m, the electric charge. The transfer Ai ~ ~b 
is linear (superposition principle). 

For the time being, only tangent spaces have been used in the construc- 
tion. No points have yet been constructed. This question (uncertainty) will 
be further discussed in Section 13. 

8. LIE ALGEBRA u(2). POSSIBILITY FOR IDENTIFICATION 

According to Remark 5.1 and Table II, a massive particle cannot a 
priori be attached to only one spinor of C 2 or ~2. In spite of  this identity 
problem, it must be possible to identify the individuals as a whole, as one 
indivisible quantum in an experiment of normal size in the common space. 
Occasionally, this situation will simply be expressed by "as studied from 
$4, or M4." In particular, taking the topology as an indication for the 
wholeness, we should be able to detect their U(2) topology more or less 
by local and tangent elements. 

This is why symmetry is so important in quantum physics: We can 
conclude from local elements to the individual wholeness only if the 
individuals have symmetries and if their symmetries are contained in their 
local elements. 
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This means that the local contact between one individual and the 
common space is not made by points but by Lie brackets. Here are two 
examples: First, according to the Lie theorem, the whole, simply connected 
group manifold can be obtained from the Lie algebra. Second, according 
to the Frobenius theorem, a foliation is obtained when the vectors and their 
Lie derivatives lie exactly on the tangential spaces. Since the Lie brackets 
principally cover a neighborhood of a point (i.e., more than just a point), 
the U(2) individuals are principally realized nonlocally in a common space 
(uncertainty principle). 

Therefore, we have to consider a matrix basis that is tangent to U(2) 
when individuals are to be identified as "particles" or "quanta,"  

u(2) = {kr k} = equation (17) 

In our model the physical elements for the realization of ~ individuals are 
now 

2 x 2 matrices u(2) = tangent objects as 

representatives of the individuals 

~: {qJR, qJL} = spinors = classical vectors of (51) 

C 2, ~:2 as representatives of their potentials 

We will speak about tangent objects when we wish to identify U(2) 
individuals as studied from the common space using u(2), or more generally, 
when algebraic aspects of  0 (or A) come into play. On the other hand, the 
conception of vectors tends toward wave functions and space connections. 
In quantum field theories the two aspects are mutually related, roughly 
speaking, by Fourier transformations (Weinberg theorem). 

The difference between the two aspects of equation (42) is also discussed 
in Remark 11.4 below. The basis of C 2, equation (18) r u(2), corresponds 
to a noncompact overlapping of this algebra: The matrices (18) have the 
same commutators as u(2), but they are not unitary. 

Remark 8.1. Equation (51), where the two aspects are merely put side 
by side, is, of  course, not the final formulation for 4' in a quantized gauge 
theory. But it is sufficient for the construction of a reasonable tangent space 
~4 and for  proving the algebraic transformation properties of the tangent 
objects, which is covered in the next section. It also opens the way to gauge 
theories where, roughly speaking, both aspects are tightly connected (see 
Remarks 11.1, 11.6, and the first paragraph of Section 13, below). 

Remark 8.2. The utility of the 2 x 2 matrices o -k (21) for electrodynamics 
is well documented by Baylis (1980) and Baylis and Jones (1988), but 
without mention of their relation to u(2). 
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9. MATRIX ALGEBRA M(2,  C) 

Now we try to find an algebraic description of the tangent objects, as 
studied from the common space. 

For the sake of simplicity we shall first only consider one spinor space, 
e.g., C 2. That is, we ignore the identity (i) problem of Remark 5.2 and only 
consider rotations in R 3. The complete matrix algebra M(2, C) has eight 
real dimensions. One can choose the anti-Hermitian matrices u ( 2 ) =  {io-k}, 
equation (6), plus the Hermitian matrices {o-k}, equation (10), as the eight 
units. From a geometric point of view, the former are the complement 
of the latter: both can characterize the geometry of u(2) in the same manner. 
Therefore, it is of no importance which of them is selected as the possibility 
for particle identification. We choose the Hermitian matrices 

{ k } : ~  u(2) (52) 

because of their advantages in providing a quantum mechanical description 
(real eigenvalues as representatives of experiments). 

Matrix algebra is used to describe the q, transformations in the sense 
of tangent objects living in the common tangent space R 4 (as constructed 
in the next section). These transformations are different from the transforma- 
tions (50) that are related to the space C 2 itself or to classical, nonspecific 
vectors therein [see the comments for equation (51)]. The algebra inter- 
changes the 0 components. 

The peculiarities of the tangent object transformations can be demon- 
strated by (what we term here) the matrix theorem (e.g., Brauer and Weyl, 
1935, van der Waerden, 1967). For our purpose it can be formulated as 
follows: Let u' be a vector in a tangent space 9~' with a quadratic form Q'. 
Then an orthogonal transformation A can be written as 

A u ' =  su's -1 (53) 

where s c ~+ transforms ~ '  into ~ ' ,  

s~i2~'s -1 = ~r (54) 

In our case s ~ M(2, C). Examples are given below. 
The vector transformation (50) is linear with the coefficients, whereas 

the tangent object transformation (53) applies a bilinear, adjugate treatment. 
The relation to the identity problem of Remark 5.2 is given by the 

following physical interpretation: A transformation of tangent objects must 
make it possible to find the same particle after the situation has been changed 
(but, unfortunately, it does not guarantee this in ca; see Remark 11.6). 

Remark  9.1. The statements "u(2)"  and "Hermit ian" are equivalent 
in our treatment (52): in our space construction u(2) is hidden by the 
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concept of Hermitian operators. Conversely, it seems that it is just the u(2) 
algebra that marks out quantum theory with its Hermitian operators [pro- 
vided all this can be developed from spinor concepts by properly defined 
space connections which allow the momentum to be extracted from the 
angular momentum, and likewise the angular momentum from spinors 
(Weyl-Heisenberg group?); see Section 13 for a further discussion of this]. 

Example 9.1. Construction of and transformation in R 3. 
(a) (Dubrovin et al., 1986). Consider the (matrix) algebra (20) of the 

quaternions, 

•: q = a + b l + c j + d k  (55) 

The Euclidean space R 3 is determined by the subset of "imaginary quater- 
nions" H0 defined by a = 0, 

qo----= X C Ho = [~3: x = b l + c j + d k  (56) 

with the metric 

The sphere S 3=SU(2)  
quaternions 

go=-q02=b 2+c 2+d 2 (57) 

is determined by the subset of the normalized 

HI: q l=a+b l+c j+dk  with qlq~=l (58) 

which means 

a2+b2+c2q-d 2= 1 (59) 

Thus, an orthogonal transformation (rotation ao) of ~3 (= ~ , )  is given by 
the matrix theorem 

aq: x-~ qlxq~ 1 (60) 

(b) In terms of the transformation (50), the following trick is used for 
translating the vectors from the space C 2 onto the tangent objects in R 3 (van 
der Waerden, 1974). Let (h, h) be the basis of C 2. Then the special form 

( a l h +  2 a ~ 2, 1,2, 
a2u)(blU + (61) 02/,/) ~--- ~/ /.,/ 

is considered to be the product of two transformed vectors, one in the 
1 1r 2t  direction 1 (u ~ u ), and the other in the direction 2 (2 ~ u ). (These vectors 

can be thought of as stemming from the primary anisotropy of Table II.) 
Then the general bilinear form 

Co(h)2+ ' ClUU + C2(2)  2 ( 6 2 )  

with the matrix C (22) for t = 0 is thought of as being transformed by 

( a ~ , )  (a~ a2) Io~12q - 1/312=1 (63) SU(2): -/3* = bl b2 ' 
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where the tangential object structure is constructed from the transformed 
vectors by 

b I = - a * ,  b2 = a* (64) 

The right-hand side of the matrix theorem is then 

( a, a 2 ] (  z x + i y ] ( a *  

- a *  a * ] \ x - i y  - z  / \ a *  a 1 

which leaves x 2 + y2 + z 2 invariant. 

Example 9.2. A well-known example for the matrix theorem is the 
transformation of the Dirac matrices y .  as "tangent vectors" in R 4 (see, 
e.g., Fermi 1954). 

Vectors in R4: 

x .  x .  = ~ a.~x~, A = {a.~}, AA = 1 (66) 

Spinors: 

Matrix theorem: 

0--->0 '= T-10 (67) 

a.~y. = T y . T  -I (68) 

Second Clifford algebra: 

T = 1 -Y. (1/4)e.~y.% 

a~. = 1 + e.~, e.u = -eu~, lel<< 1 
(69) 

10. DIRAC'S CLIFFORD ALGEBRA 

The program of Sections 8 and 9 leads, of course, to Dirac's Clifford 
algebra. Therefore we can confine ourselves to some comments. Only two 
aspects will be commented upon: the construction of  the algebra--a residue 
classs construction in a sense similar to that of Section 5- -and the fact that 
the y matrices can be considered as objects ("vectors") in R 4. 

The space doubling 

C 4 = C 2 0 C  2 (70) 

results directly from the fact that we have two relatively independent but 
algebraically similar C 2 spaces with the properties (37), (38), and Table I. 
Then we arrive at the matrix algebra M(4, C). 
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1. One could ask why a residue class construction is needed again. It 
is for the same reason as in Sections 5 and 6. There we constructed the 
basis for the common space; here we have to construct the basis for the 
individuals (tangent objects). The individuals are to be released from all 
details except the algebraic indications for their topology and the metric 
(orthogonality concept). The former lead, of  course, to the matrix rep- 
resentation of the Dirac y's,  the latter to their Clifford algebra structure 
withe the same Q form (31) as before. 

2. Vectors of R 4 can be constructed as [and only as, see Brauer and 
Weyl (1935)] 

vector = ~y~0  (71) 

and it is also possible to construct a wave equation in M4 (which has 
additionally an affine connection) with the aid of  scalars, 

kinetic term = y"  0 ,~  (72) 

Both C 2 spaces have four real dimensions and are relatively algebrai- 
cally independent. One finds that the vectors (71) and therefore the kinetic 
term (72) can be separately defined and transformed in each of the two 
subspaces C 2, ~;2. According to equation (52), the units for the U(2) ~0 
tangent objects in these subspaces are the o -k of equation (21). Thus, we 
arrive at 

~o-k~, and o.kOk~ p (73) 

from which one obtains the generators of  the Dirac algebra, 

1, ~/0, ,)/1, ~/2, ,y3 (74) 

in the van der Waerden half-spinor representation 

where ~ = (o.~, o.2, o.3). The minus sign comes from the difference between 
C 2 and {;2 and will be explained in Remark 10.3. The ~+ character of  the 
orthogonal transformation has been demonstrated in Example 9.2. 

These comments elucidate the hidden U(2) behind the Dirac algebra. 
U(2) is completely hidden because of the well-known theorem that the 
algebra over C with the generators (74) and the defining relations (28) and 
(30) is isomorphous to the general matrix algebra M(4,  C). 

11. CONSTRUCTION OF THE MINKOWSKI 
TANGENTIAL SPACE R 4 

We would like to have a construction for R 4 similar to that for R 3 
according to Example 9.1. A direct generalization, however, confronts us 
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with difficulties, for instance, that H ~ R 4, and that we have eight coordinates 
in the biquaternions (35). We start with an ad hoc definition. 

A biquaternion {q, ~} with the coordinates {a, b, c, d, d, /~, ?, d} i's 
called a biquaternion with junction {q, qe} when 

d = - a ,  /~ = b, ? = c, d = d (76) 

Identification (76) closely links C 2 and ~;2, or, which is the same, H 
and H. According to equations (34), (36a), and (36b), the relation to the 
junction as used for the two-u construction (30) is given by the binary 
scheme in Fig. 1. The two-u construction of the one-to-another "inter- 
penetrating" nonlocal U(2) objects implies that, mediated by the large 
number of vacuum elements, all ui directions can be "contacted" or "com- 
pared" or "overlapped" with one another (this will be expressed by the 
term "freely rotable"). Equation (76) shows that the coordinates of com- 
plementary uiuj products (e.g., ulu2 and u3u4) are equal, which property 
represents some kind of isotropy and justifies the term "free." The dimension 
of the space is reduced by equation (76) from 8 to 4, which is of some 
importance for an electromagnetic correspondence between U(2) and R14 
(cf. Remark 12.1 below). Equation (76) is the general basis for bilinear 0 
constructions in the common space. 

We can then put 

~4 = {q, qc} = (H, He) (77) 

The metric is constructed analogously to Example 9.1, 

g = �89  _ q2c) = a 2 _ b 2 _ C 2 _ d 2 ( 7 8 )  

[= a 2_ g2, where go is taken from equation (57)]. The representation of g 
as a difference, q2q2, e x p r e s s e s  the degree of independence and 
equivalence of the two spinor spaces C 2 (= H) and ~;2 (= ~). The proof of 
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equation (78) shows, however, that the metric (78) is not trivial because all 
the three objects 

g, q2, _q2 (79) 

are different from one another. 
The (physical) coordinates of the tangent Minkowski space R 4, 

{4 x, y, z}, are listed in Table III (see also Table II). 
The common time t, for instance, is constructed by identifying the a 

coordinates o n  C 2 and (~2, where a and ~ alone do not have the meaning 
of a time. The concept of a common time does not come until it is studied 
in R~. This point is discussed further in Remark 11.4. 

Consider the ~0's. The information transfer of the q~ individual potentials 
Ai, equations (2), (5a) and (5b), via Table II to /31 and /32 in Table III, 
shows that the "empty"  (and also the "primary")  space is completely 
isotropic with respect to the information about the &s. That is, the material 
for the wave function in •4 does not bear any direct trace of the U(2) 
structure. Therefore it can be formed entirely anew by Schr6dinger or Dirac 
or Poincar6 group operators, can suffer new boundary conditions, can get 
new symmetries, and so on. 

Consider the A realization. Table III shows a strict transversality 
( A z - 1 )  resulting from the Ai orthogonality on U(2): f ld32-1  according 
to equation (46). 

The fl linearity of tb represents a spinor realization in R 4, and the fi 
"bilinearity" of  A represents a linear vector representation--linear because 
the identifying equation (76) is not a multiplication. The vector basis of 
our ~4 (final column of Table III) is also "isotropic" in a sense: All four 
u's are contained in each of the four ~4 direction units. [As also shown by 
this column, the two spaces R (or C 2) and L (or ~2) are different in this 
aspect. This will be further discussed in Remark 11.3 and Example 13.1.] 
The ~4 directions can be distinguished by their u arrangements. There is a 
fundamental difference between the time (1, us) and the space directions; 
only the latter contain the generating combinations of equation (30). 

Table lI l  

Units ~om ~+ 
R~ {q, qc} a ~1 ~2 a (R, L) ~ 

l (a,a) ~1 ~2 1 (1, UlU2U3U4) 
Z (b, 6) ~1 ~2 1 (UlU2, U4u3) 

x (~ d) ~l ~2 (~l,ffi2) (u3ul,u4u2) 

aNote carefully equation (76) and Fig. 1. 
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Remark 11.I. [Identity (iii).] Table III shows that the coordinates 
x, y, z, t are physically of the same nature as the coordinates a, b, c, d of C 2 
and ~, /7, g, d of {22. From comparing with Table II, one can see that the 
coordinates of R~ and the information about the A individuals (carrying 
mx and m2) are also of the same physical nature, irrespective of renormaliz- 
ation: they are covariant coordinates. Taking a "slight" generalization from 
R14 to g{4 into account, one then obtains the following interpretation: 

The forms A = A~ dx ~ (which can locally define a gauge connection) are, 
considering their physical contents, the two potential forms on the U(2) 
individuals (9) that are linearly realized on the Minkowski space. 

Just as in the ~b equation (51), we can also expect to find two aspects 
in A- - the  covector aspect discussed above and the algebraic aspect. The 
latter comes into play in the process leading from the old to the gauge field 
theory. The fields A~ then take values in the Lie algebras u(1) and su(2), 
which corresponds to the concept of tangent objects as defined in Section 
8 (cf. also Remark 11.3, second paragraph). The matrix theorem calls for 
the use of an adjugate representation for A. Naturally, all this could be 
better discussed when the junction is completed by a space connection 

To sum up: we obtained a physical equivalence of the electromagnetic 
potentials on U(2) and R14 (correspondence principle). 

Remark 11.2. [Equivalence between our and the van der Waerden 
construction with the aid of his C tensor (22).] Van der Waerden (1974) 
(who reached his results back in the late 1920s) constructed R~ as follows. 
The spinor units are denoted by 

1 2 2 1. ~ 2  u, u c C  , u, ~/~ (80) 

They are transformed according to equation (50). The complex matrix 

C=( cll" C12") = H q-/~ (81) 
\ C21. C22. /  

can always be written as the sum of a Hermitian (H) with an anti-Hermitian 
(I21) part. The space of bilinear forms 

1 1. 12. 21. 22. 
e l l .  UUq- C12. /,//,/-It- C21. UUq-  C22. UU (82) 

is transformed onto itself by the transformation (50) leaving invariant the 
determinant 

Dg = Cl l .  c 2 2 . -  c12. c21, (83) 
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If, according to van der Waerden, C is equal to its Hermitian part, 

( z + t  x - i y ~  =(22) 
C = - H = \ x + i y  - z + t  / 

then the invariant is 

D = t 2 - z 2 - x 2 - y 2  = inv 

(84) 

But if C is made equal to its anti-Hermitian part [u(2) basis according to 
equation (19)], 

and 

C =  I2I = ( it' + iz' y' + ix') 
\ - y ' + i x '  i t ' - i z ' J  (86) 

then the invariant is 

1~  = - - t ' 2  + Z '2  + X ' 2  + y '2 = - D  (87) 

Comparing with equation (78), we can see that g = D = -/~, or formally 
= �89  with a = t ' =  t, b = z ' = z ,  c = y ' = y ,  d=x~'=x. The geometric 
content of this construction is hidden in the tangent object units of H 
[-iu(2)]  and 10 [u(2)]; cf. Sections 8-10. [Compare, e.g., the 
expression)~ cr"A~ for A with equations (71) and (72) for 4~-] 

The equivalence between both constructions is given by a relationship 
between H, H and the biquaternion parts H, Hi. Neither H nor H is a 
quaternion representation (20). The relation is achieved by Hamilton's 
complex quaternions, 

(t, z, y, x)  = (a, ib, ic, id) 

q = a + b l + c j + d k c H  
(88) 

( t', z', y', x') = ( a, - i b ,  - ic ,  - i d )  

qc :  +dE + l)L + ~J + dK cH (89) 

= - a E  + bL+ c J+ dK ~ Hc 

{q, qc} is a biquaternion with junction according to definition (76). Proving 
equation (89), one must observe equations (45a), (45b) that exchange the 
roles of a, b and of c, d. The determinant D becomes a quaternion norm, 

D = qc7 (90) 

(85) 



1486 Donth 

One also obtains/~ = q~0~ using an analogous definition of 0~. The property 
(79) is hidden by the additional imaginary units i in equations (88) and 
(89). Thus 

a+bi  
H(a, b, e, d)=- HR ~-k_e+ di 

ffI( ~t, b, ~, d) =- IlL ~- ( b + ai 
\ d + c i  

c + di] 
~H (91) 

a - bi] 

d - ei 
- b  + ai] ~ Hc (92) 

where the symbol ~ denotes the equivalence desired between u(2) A tangent 
objects H and vector spaces H. 

Remark 11.3 (Parity, PCT.) Comparing equations (88) and (89), we 
can see that a different parity (R, L) can be attached to the spinors from 
C 2 or ~2, respectively, e.g., 

~0R ~ C 2, 0L ~ ~2 (93) 

This notation has been used a few times before in this paper. Conditions 
(93) also explain the minus sign in the construction (75) of the 7 matrices. 

One can see from the final column of Table III that, in spite of the/3 
isotropy of ~4, the spaces R = C 2 and L = C2 are quite distinct with respect 
to the uiu~ contents and arrangements! The construction of HR and HL 
according to equations (84) and (86) suggests that we can, at least partially, 
define A tangent objects for R and L separately. 

It is difficult to discuss charge conjugation C and time reversal T via 
the space C a . It would of course be better to discuss them with the tangent 
objects. Neither can a definite charge be attached to R or L alone nor do 
the parameters a and a alone have the meaning of "times" before they are 
identified according to equation (76). Nevertheless, we do find some kind 
of "charge transfer" from the two conjugate parts of the A individuals to 
the operation C in R 4, and some kind of "time transfer" from the "times" 
~- in U(2) via C 4 to t of  ~4. 

Consider the situation after a P transformation and try to restore the 
original situation using C and T. Charge conjugation in the U(2) level 
corresponds to qq ~ q~2 in Table II, which means that 

c~--~d in H and ~--~r in H (94) 

in the C a level, which corresponds to x ~--~y (?) according to Table III. This 
operation does not interchange H and H. "Time" ~" reversal ( ~  -~ )  in the 
U(2) level leads to u 4 ~ - u 4  [cf. equation (15)], which means that 

g--> - H  (95) 

whereas H remains unchanged (!). In terms of equation (89), we have 

(a, -ib,  -ic, - id)-~ ( -a ,  +ib, +ic, +id), 
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an operation that does not interchange H and H either. And yet, in order 
to reach the situation before P, we have to interchange H and H. This implies 
a ~ - a ,  and this therefore corresponds to time reversal T in N4. 

R e m a r k  11.4. (Time.) The relation between the two r 's  in the A 
individuals of U(2) and the time t of R 4 is hidden by the algebra ~+ [see 
equation (34)]. The process that "convolutes" the two r 's  to the common 
time t (dynamical part  of  mass generation) is not known, although a first 
primitive approach to a simple " thermodynamic"  variant was published 
some years ago (Donth, 1982). 

As we have complex factors containing i w r  in the individuals, we arrive 
at Wigner's time reversal for r - ~ - r  (0 and qJ*), and at Born's bilinear 
probabili ty construction (0~*).  

As mentioned above, the two a coordinates o f C  4 alone do not represent 
a time. But if one projects the time concept t from N~ to the two a 's  (see 
also Remark 11.3 relating to this point), then the two "apparent  t imes" a, d 
of  Fig. 1 also go in opposite (Feynman) directions (t = a = - d ) .  

The principal nonlocality of  the individuals and of single vacuum 
elements enables one to construct a p h y s i c a l  concept of  a common time, 
which is also common for parts of  the world that are temporarily "isolated" 
from one another. 

R e m a r k  11.5. (Boost B and rotation R.) The difference between the 
vector transformation (50) of  the spinor space and the transformation of 
the tangent objects in N4 as represented by the matrix theorem can also be 
demonstrated by means of boost and rotation operators. 

For the sake of simplicity, only the well-known infinitesimal transforma- 
tion in the z direction is considered. Then, for real parameters o11, a2, 

1 ) 
A =  = for C 2 (96) 

y 1 1 - a~ - ia2 

A* = o1" 
y* ~* 1 1 - -  o11 + io12 

for ~;2 (97) 

The generators I1,12 are obtained by 

A = 1 + I10~1 + I 2 c t 2 + "  " " 

A* = 1 + Iao11 - 1 2 o 1 2 + "  " " 

(98) 

/3, /4, 15 and 16 can be obtained analogously. 



1488 Donth 

It is also well known that a classification of the Lorentz group rep- 
resentations (o-z, o-'~) is obtained by a nongeometrical (using imaginary 
coefficients) construction beyond the Lie algebra, 

o'z ~ 11 + ii2,  O"z ~ ( 1 1  - -  ii2) (100) 

with 

~b L = (�89 0), OR = (0, 1) (101) 

where o-z and O"z are linked to two mutually commutating su(2) algebras 
(spin). 

We must now ask: can O-z and o-'z be linked one-to-one with the two 
spaces C 2 and ~2 respectively? 

The answer is no for the transformation (50) of the spinor spaces, 
because the partition (98) is different from the partition 

1 + X1(I1 + ii2), 1 +X2(I1  - iI2) (102) 

This is also clear from Remark 5.1: In general, the two-u construction 
distributes one individual onto both the C 2 spaces. 

But the answer is yes for the transformation of tangent objects mediated 
by the matrix theorem. With respect to the algebra M(4, C), the X's become 
complex parameters [cf. this with s in the equations (53) and (54) or with 
T in equations (67) and (68)]. Boost and rotation of the ~OR objects are 
parametrized by Re X1 and Im X1, whereas Re X2 and Irn X2 parametrize 
boost and rotation of the 0L objects. 

The boost and rotation concept is therefore connected with the identity 
of the tangent objects~ and not with the spinors as vectors in the C 2 spaces. 
But the fact that boost and rotation can actually be divided into OR and 4JL 
objects is a remarkable quality of the general construction. 

R e m a r k  11 .6  [Identity (iv).] The identity (i) problem of Remark 5.2 
cannot be solved within the framework of our R14 construction. Essentially, 
so far we only have tangent space constructions for R~ and a necessary (but 
not sufficient) condition for identifying tangent objects (Section 7) that is 
also totally restricted to the uncertainty of the tangent constructions. We 
have not yet constructed any point, or, in other words, we do not have a 
"Verpflanzung" of the metric (Weyl, 1923, Chapters 7 and 8) or a space 
connection that would transform R 4 into M4. Ultimately, the junction (76) 
only makes it possible to state that the conjugate particles have an equal 
amount of mass and charge. The main problem is to connect the rather 
independent spinors q'L and ~OR, or more precisely their tangent objects, 
by connections, in order to define the particle identity during processes 
(movements with interactions), too. Phenomenologically, the "affine" con- 
nection links 4JL and OR by Dirac's mass form, and the gauge connection 
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links ~OR with ~OR, and independently !) ~OL with ~OL by the charge form(s) 
of simple field theories. 

Remark 11.7. [Identity (v), "Majorana problem."] Originally, at the 
U(2) level, the junction was defined between charge conjugate parts, plus 
and minus, but the spaces which we have constructed largely separate R 
and L. 

12. OVERVIEW OF THE CONSTRUCTION 

From the standpoint of a hidden U(2) world as being the presumed 
reality behind the quantum mechanical formalism, the following space-time 
elements have been constructed from local tangent elements at the U(2) 
individuals. 

ordinary tangent space at a four-dimensional individual. There is no 
mention that its topology is U(2). 

(q, ~), (H, H) biquaternions. Orthogonal two-u residue class construction 
over two conjugate ~ ' s  with respect to the wave metric of the individuals. 
Second Clifford algebra ~+. 

C 4 = C2• ~2 spinor space isomorphous to the biquaternions as a representa- 
tive of the "between" of two conjugate individuals. The spinors ~, live 
here as nonspecified vectors (wave functions). 

SL(2, C) comes from a conformal comparison of R 2 tangent spaces at two 
individuals. B~ 2 is marked out by the fact that there are only two "physical" 
coordinates ~1, ~2 on U(2) that carry potentials as a consequence of the 
electromagnetic wave transversality theorem. 

{o "k} = ~ u(2) Hermitian matrix units which enable one to identify U(2) 
individuals by their Lie algebra. Possibility of identifying tangent objects 
with a U(2) structure, as studied from a common space. 

M(4, C) Dirac's Clifford algebra. Two aspects are considered here. (1) That 
is, too, a residue class construction with respect to the wave metric. (2) 
The second Clifford algebra can transform the tangential objects x = y~ 
or A~ within the common tangent space R~ (TxT-1). 

4 R 1 - ( H ,  He) a common tangent space (being, most likely, tangent to the 
common Minkowski point space M4, which remains to be constructed; 
this problem is discussed in Section 13). The eight dimensions of the 
biquaternions are reduced to four by the junction (76). A realizations 
[covariant vectors with values in the u(2) Lie algebras] as well as spinors 

(written as vectors ~y~tp) can be represented within it. 
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Thus we have constructed R 4 with living spaces for nontrivial U(2) A and 
individuals whose U(2) structure is present, but completely hidden behind 

the general properties of M(2, C) and M(4, C). The ad hoc construction is 
"physical" and a very special one. It is more than a question of choosing 
between a set of similar spaces. A great deal of material (including algebraic 
material) is prepared for the construction of a quantum theory. 

One can see from the numerous remarks that the logical relationships 
between the elements listed above are still rather complicated, probably for 
three reasons: (1) ~, A, and ~b are not "separated" in the U(2) world, which 
is the cause for the interpenetration of the concepts based on them. (2) The 
U(2) coordinates are well mixed by the two-u construction. (3) It is believed 
that a closure---the roo f - -o f  our construction cannot be reached before the 
problem of the space connections is solved. 

The solution of three problems (among many others) seems to be most 
pressing: (1) Find the local symmetry group of the conjugate equations 
(la),  ( lb);  (2) find the differential geometric basis for the two-u construction; 
and (3) do similarly for the junction (76) and Fig. 1 (remember that the 
many vacuum elements are important for problems 2 and 3). 

Remark 12.1. (Metric.) Our construction has two properties: The 
metric signature in U(2) and R 4 is the same, and the transverse poten- 
tials are linearly transferred from U(2) via C a to R 4. This is prerequisite 
for the occurrence of linear wave equations in U(2) and M4 (for A and 
in the latter). The solution of the above three problems should answer to 
the question of degree up to which the metric and wave transfer are 
equivalent (i.e., is there a new kind of Huygens principle that permits a 
unique selection of the metric?). 

I remark once more that the intermediate story C a does not have such 
a metric. There is no independent electrodynamics in C 4. 

13. MAKING THE NEXT STEPS MORE PRECISE 

Further work is planned within the framework of the U(2) program. 
Using the algebraic constructions of the present paper, some of the next 
problems can be formulated more precisely than before. 

13.1. Connections 

Finite shifts are needed to enlarge the junction (76) into connections 
(see also Remark 11.6). Finite shifts are usually obtained from local (alge- 
braic) elements by exponential maps. Two exponentials on U(2) coordinates 
are already contained in the potentials of our individuals as wave factors, 

e i~ and e im~j , j = 1, 2 (103) 

It is a natural idea to use them (and some relations regarding the tori 
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involved) for constructing affine and gauge connections, respectively. Not 
only the potentials, but also the phase surfaces of  de Broglie's phase 
correspondence theorem (de Broglie, 1925) are forms in ~14. No special 
individuals (quanta) for gravitation are contained in the U(2) model. 
Therefore, any quantization of gravitation can only start from the assump- 
tion that the affine connection emerges from the U(1) factor exp(itor) of 
qJ and A individuals and o f  ~b vacuum elements. The effect must go via C 4 
and we can ask whether the "fifth force" (ranged in the 100 m scale) can 
be grasped as the quantum effect of gravitation. 

13.2. Points 

At present we do not have a precise construction of a point space (•4) 
that could serve as a basis space for the tangent space R 4 constructed. A 
point space would also be needed as a basis for classical gauge fiber bundles. 
In a previous paper (Donth and Lange, 1986) the idea was suggested that 
one can obtain culminating points using an interaction of  ~b (or A) 
individuals with an infinite number of vacuum elements. 

It is expected that our tangent space construction (C 4, ~ )  and the 
possibility of identifying tangent objects therein are relatively independent 
of the culminating point construction. This independence seems to be a 
reasonable basis for quantum mechanical uncertainty. 

Such a subsequent culminating point construction should, to some 
degree, refer to the renormalization equation (16) and to the compactness 
of U(2). Because of the reference to renormalization, the meaning of  ~b and 
A functions is expected to be modified in some aspects; for instance, the 
conception of being functions of  x ~ ~4: ~(x) ,  A(x). 

The concept of uncertainty was related to objects living in tangent 
spaces (tangent objects of Section 8). The concept of the limit k-->~, 
necessary for a culminating point, was related to mass and charge values, 
to the vacuum, and to the (apparatus of an) experiment. It is therefore our 
aim to make a construction with a far-reaching separation of wave function 
(as an object of  the tangent space C 4) and a point, such as in Bell's 
phenomenological construction (Bell, 1984). The advantages of such a 
separation are the possibility of making a natural construction of  Born's 
probability with no violation of the superposition, and of reaching a concep- 
tual solution to the problem of how the wave function is "reduced" during 
the experiment (Bell, 1984). 

13.3. Spin Statistics Theorem 

The main aspect here is to modify Weyl's ideas about the Verpflanzung 
of the metric, mentioned above, by requirements resulting from the new 
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space construction (including C4). In this sense, the spin statistics theorem 
supplies us with some information about the similarity expected between 
the tangent space and the basic point space desired; more precisely, informa- 
tion about the connection between neighboring points of M4 on one hand 
and the properties of the tangent space •3 c R~ on the other hand. That is 
true because the following condition is sufficient as proof of the spin statistics 
theorem: A local region of  the three-dimensional point space E 3 containing 
two points as representatives of two identical particles must be equivalent 
to their common tangent space ~3 in such a way that an exchange of the 
two points in •3 is equivalent to a 7r rotation of both their tangent objects. 
[The theorem thus follows from the well-known transformation behavior 
of spinors under a ~r rotation (Donth, 1970, 1977).] 

As this idea is only related to ~:3 and R 3, we have a nonrelativistic 
approach to the spin statistics theorem (!). 

It is a general property of our space construction that it can concep- 
tionally unite common space aspects (residue class construction, connec- 
tions between many particles) and individual aspects (configurational space 
for tangent objects). Comparing Remarks 11.3-11.5, it seems that PCT, Spin 
and Statistics, and all that can conceptually be grasped by some simple 
relations (equivalent relations) between a region of the point space and our 
tangent space properties. 

13.4. Geometry of Quantum Mechanics 

Gauge fiber bundles are useful geometric constructions for semiclassical 
theories with minimal interaction, but they are probably less useful for 
quantum theories. In our model the geometry of quanta is assumed to be 
represented by ~ individuals (2) and A individuals (9) both being electrody- 
namic constructions on U(2) manifolds. In our mass construction proposal, 
the points of basis are obtained from an "experiment" that uses the many 
vacuum elements. This construction does not destroy the principal sources 
of uncertainty, as mentioned above. This independence of points (experi- 
ment) and tangent objects (quanta) demands a more "spongy" construction. 
A complete alternative would be that the "fibers" are not pinned to points 
on a basis but to the tangential objects which have been rather independently 
constructed from a common basis. 

13.5. Interactions 

There would be no point in constructing a principle for the interactions 
that has no relation to the U(2) objects. Consider the two-u formulas (30) 
and (31), and Remark 5.1 about the origin of the u's in it. Then it is perhaps 
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useful, in the "pullback" to the U(2) world, to assume that the interaction 
is a "mistaking" on the part of  the 0 and A individuals of their "own" 
U(2) space (or its S 3 part) for the U(2) (or S 3) spaces of vacuum elements 
~b which are of nearly the same kind and which are offered in very great 
numbers. This high "space degeneracy" has been expressed by binomials 
such as in equation (13). (An analogous change by mistake can perhaps be 
constructed between the q5 elements--~b self-interaction, realization of a 
chemical equilibrium between all possible kinds of vacuum elements gen- 
erating the "true vacuum.") 

13.6. The Way toward Charge and Mass  (A Trial) 

In our biharmonic parametrization (4) the group element g c U(2) can 
be represented by the matrix 

, , f  COSO3 e-i~2 sin O3 e'~l ~ 
(104) 

g = e k - s i n  03 e -i% cos 03 e '~2] 

The corresponding left and right invariant vector fields (L~, Ri) are (~ := ~ + 

92, 0 := ~1 - ~2) 

(0  ~) 0 sin O3 cos q~ 0 
: L1 = cos 03 cos q~ sin 03 0~Pl cos 03 0~P2 

o 
+ sin cp - -  

003 

0 0 
R 1 = cos 03 COS @ . +- sin 03 cos ~b 

sm 0 30~o I COS 0 3 0~2 

(105a) 

O 
+sin ~003 

( O1 ~ ) O ~-sinO3sinq~ 0 
_ : L2 = - cos  03 sin ~p sin 03 0q~l cos O3 0r 

0 
+ cos ~0 - -  

0~q3 
(105b) 

a 0 
R2 = - cos  03 sin qJ . sin 03 sin ~b 

s ln  0 3 0~/91 COS 1.~ 3 0~2 

0 
+cos  0003 
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(~ O ) :  L3= 0 0 ( = _ s i n 0 3  . 0 cos 03 0 ) 
0qo~ 0q~2 sin 1.~ 3 0@1 cos  ~3 0@2 

(105c) 
o o 

R 3 = -I 
0@1 0@2 

: L4= R 4 = - -  (105d) 

The seven vectors { e  4 = R 4 ,  ei, Ri}, i = 1, 2,  3, can serve as a basis for the 
seven Killing vectors of U(2) with the standard metric. 

The following difference seems to be important. The biharmonic coor- 
dinates (expressing the two-torus symmetry of the Heegaard splitting, and 
which were used in the two-u construction of the common tangent spaces) 
are true coordinates, that is, 

0/0~1 , 0 /0~2 , 0 / 0 0 3 ,  0/0'/" commute with one another (106) 

whereas the vector fields (105a)-(105d) (expressing the S 3 and S 1 group 
symmetry) are not a coordinate basis on U(2): 

[Lj, L~] = -2Lk,  [Ri, Rj] = -2Rk (107a) 

[L4, Li] = 0, [R4, R~] = 0 (107b) 

(i = 1, j = 2, k = 3 and cyclic permutations). The misfit of  the corresponding 
"congruences" is given by these commutators, and one can construct cur- 
vatures from them. 

Let us assume that the following principles must be used for the 
construction of the Lagrangian ~ (its gauge invariance expresses the S l 
and S 3 symmetry): 

I. We must use the L~ (or R~) as carriers of these symmetries. 
II. The differences to coordinate systems must be compensated by 

additional terms. 
III. The generating relations (30), i ~ j ,  for the Clifford algebra ~+ 

must come into a certain correspondence ( - )  to the commutators 
(107), for instance 

ulu2+ u2ul = 0-- [L~, L2] = - 2 L 3  (108) 

Then the electrical charge eo is to be attached to [L~, L~] and the mass to 
[L1, L3] and /or  [Lz, L3].  

Example 13.1. (Sketch of a possibility.) First consider charge. Let us 
assume that L~, L2 (or R1, R2) in U(2) correspond to the covariant deriva- 
tions Vj in Me. The angles qh and ~02 are the physical coordinates [carrying 
potentials on U(2)]. Taking the/3 isotropy mechanism discussed in Table 
III into account, we should expect to get all four V's only from L1 and L2. 
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Then, considering the commutator  applied to tO, we have 

[L1, L2]-> [V s, Vk] ~ Fsk (109) 

We obtained the generator for the Maxwell field F as a gauge curvature. 
Now consider this commutator  directly applied to the U(2) individuals. 
Then we get their electrical charges m: 

(1 /2)[L, ,  L2] = -L3  = O/O~p, + 0/0~2 {im ,or ) 
= i (m,+m2)  for ~ Q  (110) 

Comparing equations (109) and (110), we see that the Maxwell fields are 
generated if[ the charge is different from zero, m ~ 0. This means that our 
m-charged individuals really have electrical charges Q in the sense of  
Coulomb. 

Analogously, we can speculate on how the commutators [L1, L3] = 2L2 
and [L2, L3] = -2L1 lead to the masses. Contrary to L 3 for charge, L1 and 
L2 contain the hidden vectors 0/003 (the coordinate 1~ 3 does not carry 
potential, A3 = 0). It is a "supersymmetr ic"  variable because it "makes"  
neither to's nor A's, because ~q3 is "contained" in both [cf. equations (2) 
and (9)], and because ~-~3 must "explain"  why the vacuum elements q5 [only 
depending on the O 3 (and ~-) strings] not only build a spinor sea, but also 
have many aspects of  scalars. Because 03 is hidden, the way to the (Ein- 
stein?) curvature is also hidden and not so simple. 

The charge value eo (or its square a = e2/hc) is universal because O3 
is not involved in L3, whereas the mass values m0 are not universal. They 
depend on the kind (m, k) of  the individual, because ~3 is involved in L1, 
L2, and in the fling(X) functions, x = cOS O3, which are different for different 
individuals. From equation (11) we see 

e: Y l l (X)=X(1--X 2) 

~'e: ;oI(X) = (1 •  ~) 
Ix: fi12(x) = x ( 2 - 6 x 2  + 4x 4) 

v,: fio2(X)= ( 1 - 4 x 2 + 3 x  4) (111) 

z: ilia(X) = x ( 3 - 1 8 x 2 + 3 0 x  4 - 1 5 x  6) 

0.:  Yo3(X) = ( 1 - 9 x 2 +  18x 4 -  10X 6) 

. o o  

B: .~lo(X)=X 
(112) 

E o - :  y2o (x )=x  2, E1 : .Y21 (x )=x2(1 -x2 ) , . . .  

Two tendencies can be observed with increasing generation number  k: (a) 
the maximal power increases with m + 2k = to, and (b) the number  of  zeros 
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(oscillations, "statistical weights" of  the binomials) increases with 
k(k,  (k~2)2). 

I f  we apply these tendencies to the mass values for the charged leptons, 
for instance, we see that (a') each power of x gives a factor of  order a -1/2 
[a charge m is characterized, besides the exponential exp(im~j), by a 
universal charge factor x m in fimk(x); assuming that this charge factor 
translates x to a and that a renormalization condition for it in the case 
m = 1 can be represented by 

gKXK~I, K~O0 (113) 

[Cf. equations (14) and (16)], then follows that x ~ g- l ;  the statement (a') 
is obtained from g ~ al/2]; and (b') the growing binomials damp the mass 
values of  higher generations (since the vacuum k ~  o0 has the mass value 
z e r o ) .  

The corresponding generation problem for the charged leptons is rep- 
resented in Fig. 2. The breakdown of the (originally infinite) k series follows 
from the stability requirement that a particle of  higher complexity (higher 
k) should have a higher mass value. 

Let us go back to Fig. 1 or Table III .  We observe that the uiu~ content 
of  the right (R) and left (L) spinor space is rather different. According to 
the principle I I I  above, nontrivial commutators (107a) can only be attached 
to R. We have the following result: 

Mass values mo and charge eo can only be carried by particles with 
right-handed components. 

rno(k  L 

2 

0 "fro _ _ _ . .  

::3 i 

Fig. 2. A possible explanation for the existence of only a few lepton generations; m0, mass 
values; k, generation number. 
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Only the left space L contains u4 connected with the hidden ~- time. It 
is therefore L that makes the dynamics. So R and L are quite unequal 
brothers that are united by the junction (76) to the common tangent space 
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